Over-molded Filters
 Maximize filter capability, extend product life

Over-molded technology maximizes your potential

The Integrated Sealing Systems Division's over-molded technology maximizes filter potential and increases product life by sealing the outer edge of the filter membrane from harmful debris

Over-molded rubber or plastic onto felt, industrial fabrics or metal screening can be customized to meet today's system environments.

Our over-molding technology prevents system blow-by and eases installation providing a premium filter seal that will lower warranty costs and extend system life. We can use your current filter or help you design one to meet your system needs.

Kitting and assembly services are available for aftermarket and line production needs.

Contact Information:

Parker Hannifin Corporation Integrated Sealing Systems Division 3700 Mayflower Drive Lynchburg, VA 24501
phone 4348466541
fax 4348472725
www.parkerseals.com

Product Features:

- Custom shapes, sizes and cross sections to meet application requirements
- Single or multiple molded materials available.
- Variety of filter media available.

Benefits:

- Ease of installation
- Adaptable to any system configuration.
- Long life in aggressive environments.
- Can be shipped as part of an assembly

Polyester felt or industrial fabrics are available in a broad range of styles to fit virtually any filter application today. They can be over-molded with a polymer or plastic edge as well as a plastic edge with a polymer seal overmolded onto it.

Metal screens can also be over-molded with a polymer or plastic edge to provide course or fine filter capabilities. A variety of over-molded materials can be selected to optimize your system needs. The charts below provide
compatibility and some basic material characteristics. Contact your sales representative for further details and material options available.

Polymer Material Selection and Compatibility Chart					
	Polyacrylate (ACM)	Ethylene Acrylic (AEM)	Hydrogenated Nitrile (HNBR)	Silicone (VMQ)	Fluorocarbon (FKM)
Compatible Fluids	ATF Petroleum Oils	ATF Petroleum Oils	Petroleum Fluids Water/Steam to $300^{\circ} \mathrm{F}$ Ethylene Glycol	High Temperature Dry Heat Low Temperature High Analine Point Oils	Petroleum Fluids Aromatic Hydrocarbons Fuel
Non-Compatible Fluids	Steam Brake Fluids Acids	Fuels Brake Fluids	Phosphate Esters Brake Fluids Strong Acids MeOH/EtOH Blends	Water/Steam > $250^{\circ} \mathrm{F}$ Acids and Alkalis Hydrocarbon Duels Aromatic Hydrocarbons	Brake Fluids Low Molecular Weight Acids Amines Steam

Additional elastomer types are available to custom fit your needs.

Our four standard plastic retainer materials are listed in the table below, along with compatability information for select media. Our experienced engineers can work
with you to specify the most effective and cost efficient material for your application.

Material Type	ASTM Designation	Common Trade Names	Maximum Continuous Use Temperature	Burn Rate	$\bar{\circ}$ ¢ ¢ ¢		$\frac{\stackrel{L}{4}}{4}$					0 3		¢
Polyamide 6/6	PA66	Zytel ${ }^{\circledR}$ Ultramid ${ }^{\circledR}$ Minlon ${ }^{\circledR}$	$150^{\circ} \mathrm{C}$	slow to heavy burning	A	A	A	A	C	B	C	B	C	B
Polyphthalamide	PPA	$\begin{gathered} \text { Zytel } \\ \text { HTN }^{\circledR} \\ \text { Amodel } \end{gathered}$	$175^{\circ} \mathrm{C}$	heavy burning	A	A	A	A	B	B	B	B	B	B
Polyphenylene Sufide	PPS	Ryton ${ }^{\circledR}$ Cetex ${ }^{\circledR}$	$250^{\circ} \mathrm{C}$	self-extinguising to non-burning	A	A	A	A	A	A	A	A	A	B
Polytetrafluoroethelene	PTFE	Teflon ${ }^{\circledR}$ Algoflon ${ }^{\circledR}$	$260^{\circ} \mathrm{C}$	non-burning	A	A	A	A	A	A	A	A	A	A

$A=$ Recommended, $B=$ Satisfactory, $C=$ Not Recommended
Zyte ${ }^{\oplus}$, Zytel HTN ${ }^{\oplus}$, Minlon ${ }^{\oplus}$ and Teflon ${ }^{\oplus}$ are registered trademarks of E.I du Pont de Nemours. Ultramid ${ }^{\circledR}$ is a registered trademark of BASF Corporation. Amodel ${ }^{\oplus}$ and Algoflon ${ }^{\oplus}$ are registered trademarks of Solvay S.A. Ryton ${ }^{\text {® }}$ is a registered trademark of Chevron Phillips Chemical Company LLC. Certex is a registered trademark of Bryte Technologies, Inc.

